Note
Click here to download the full example code
Image compression via tensor decomposition
Example on how to use tensorly.decomposition.parafac
and tensorly.decomposition.tucker
on images.
import matplotlib.pyplot as plt
import tensorly as tl
import numpy as np
from scipy.misc import face
from scipy.ndimage import zoom
from tensorly.decomposition import parafac
from tensorly.decomposition import tucker
from math import ceil
random_state = 12345
image = face()
image = tl.tensor(zoom(face(), (0.3, 0.3, 1)), dtype='float64')
def to_image(tensor):
"""A convenience function to convert from a float dtype back to uint8"""
im = tl.to_numpy(tensor)
im -= im.min()
im /= im.max()
im *= 255
return im.astype(np.uint8)
# Rank of the CP decomposition
cp_rank = 25
# Rank of the Tucker decomposition
tucker_rank = [100, 100, 2]
# Perform the CP decomposition
weights, factors = parafac(image, rank=cp_rank, init='random', tol=10e-6)
# Reconstruct the image from the factors
cp_reconstruction = tl.cp_to_tensor((weights, factors))
# Tucker decomposition
core, tucker_factors = tucker(image, rank=tucker_rank, init='random', tol=10e-5, random_state=random_state)
tucker_reconstruction = tl.tucker_to_tensor((core, tucker_factors))
# Plotting the original and reconstruction from the decompositions
fig = plt.figure()
ax = fig.add_subplot(1, 3, 1)
ax.set_axis_off()
ax.imshow(to_image(image))
ax.set_title('original')
ax = fig.add_subplot(1, 3, 2)
ax.set_axis_off()
ax.imshow(to_image(cp_reconstruction))
ax.set_title('CP')
ax = fig.add_subplot(1, 3, 3)
ax.set_axis_off()
ax.imshow(to_image(tucker_reconstruction))
ax.set_title('Tucker')
plt.tight_layout()
plt.show()
Total running time of the script: ( 0 minutes 4.460 seconds)