Install
User Guide
API
Examples
About Us
Ecosystem
TensorLy-Torch
TensorLy-Quantum
TensorLy-Viz
Notebooks
Github
menu
User guide
1. Quick-Start
1.1. Organization of TensorLy
1.2. TensorLy Backend
1.3. Tensor manipulation
1.4. Tensor algebra
1.5. Tensor decomposition
1.6. Tensor regressions
1.7. Metrics
1.8. Sampling random tensors
1.9. Experimental features
1.10. Datasets
2. TensorLy’s backend system
2.1. Backend?
2.2. Why backends?
2.3. How do I change the backend?
2.4. Context of a tensor
2.5. Basic functions
2.6. Case study: TensorLy and PyTorch
2.6.1. On CPU
2.6.2. On GPU
2.7. Using static dispatching
3. Tensor basics
3.1. Creating a tensor
3.2. Unfolding
3.3. Folding
3.4. References
4. Tensor decomposition
4.1. CP form of a tensor
4.1.1. CANDECOMP-PARAFAC decomposition
4.2. Tucker form of a tensor
4.2.1. Tucker decomposition
4.3. Matrix-Product-State / Tensor-Train Decomposition
4.3.1. Implementations
4.4. References
5. Tensor regression
5.1. Setting
5.2. References
6. Sparse Backend
6.1. Why a separate sparse backend?
6.2. Algorithms
6.2.1. Usage
6.3. Missing Values
6.3.1. Example
Installing tensorly
1.
Quick-Start