tltorch.base.TensorModule
-
class
tltorch.base.
TensorModule
(*args, **kwargs)[source] A PyTorch module augmented for tensor parametrization
Methods
get_decomposition
()Returns the tensor decomposition parametrizing the layer register_decomposition_forward_pre_hook
(hook)Attach a new hook to be applied to the decomposition parametrizing the layer, before the forward. -
__init__
(*args, **kwargs)[source] Initializes internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__
(*args, **kwargs)Initializes internal Module state, shared by both nn.Module and ScriptModule. add_module
(name, module)Adds a child module to the current module. apply
(fn)Applies fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers. children
()Returns an iterator over immediate children modules. cpu
()Moves all model parameters and buffers to the CPU. cuda
([device])Moves all model parameters and buffers to the GPU. double
()Casts all floating point parameters and buffers to double
datatype.eval
()Sets the module in evaluation mode. extra_repr
()Set the extra representation of the module float
()Casts all floating point parameters and buffers to float datatype. forward
(*input)Defines the computation performed at every call. get_decomposition
()Returns the tensor decomposition parametrizing the layer half
()Casts all floating point parameters and buffers to half
datatype.load_state_dict
(state_dict[, strict])Copies parameters and buffers from state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network. named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself. named_modules
([memo, prefix])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself. named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. parameters
([recurse])Returns an iterator over module parameters. register_backward_hook
(hook)Registers a backward hook on the module. register_buffer
(name, tensor[, persistent])Adds a buffer to the module. register_decomposition_forward_pre_hook
(hook)Attach a new hook to be applied to the decomposition parametrizing the layer, before the forward. register_forward_hook
(hook)Registers a forward hook on the module. register_forward_pre_hook
(hook)Registers a forward pre-hook on the module. register_parameter
(name, param)Adds a parameter to the module. requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module. share_memory
()state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module. to
(*args, **kwargs)Moves and/or casts the parameters and buffers. train
([mode])Sets the module in training mode. type
(dst_type)Casts all parameters and buffers to dst_type
.zero_grad
([set_to_none])Sets gradients of all model parameters to zero. Attributes
T_destination
dump_patches
-