tltorch
.CPTRL
-
class
tltorch.
CPTRL
(input_shape, output_shape, rank, bias=False, verbose=0, **kwargs)[source] Tensor Regression Layer with CP weights [1], [2]
Parameters: - input_shapeint iterable
shape of the input, excluding batch size
- output_shapeint iterable
shape of the output, excluding batch size
- verboseint, default is 0
level of verbosity
- rankint
rank of the CP weights
- verboseint, default is 1
level of verbosity, if 0, no information will be printed
See also
References
[1] Tensor Regression Networks, Jean Kossaifi, Zachary C. Lipton, Arinbjorn Kolbeinsson, Aran Khanna, Tommaso Furlanello, Anima Anandkumar, JMLRs, 2020. [2] Tensor Regression Networks with various Low-Rank Tensor Approximations Xingwei Cao, Guillaume Rabusseau, 2018 Methods
forward
(x)Performs a forward pass full_weight
()Return the reconstructed weights from the low_rank get_decomposition
()Returns the decomposition parametrizing the layer init_from_decomposition
(weights, factors[, bias])Initializes the factorization from the given decomposition init_from_linear
(weight[, bias])Initialise the TRL from the weights of a fully connected layer init_from_random
([decompose_full_weight])Initialize the module randomly init_from_tensor
(weight[, bias, …])Initializes the layer by decomposing a full tensor -
forward
(x)[source] Performs a forward pass
-
init_from_random
(decompose_full_weight=True)[source] Initialize the module randomly
Parameters: - decompose_full_weightbool, default is False
if True, constructs a full weight tensor and decomposes it to initialize the factors otherwise, the factors are directly initialized randomlys
-
init_from_decomposition
(weights, factors, bias=None)[source] Initializes the factorization from the given decomposition
Parameters: - decomposed_tensor
values to initialize the decomposition parametrizing the layer to
- biastorch.Tensor or None, default is None
-
init_from_tensor
(weight, bias=None, decomposition_kwargs={'init': 'random', 'n_iter_max': 10})[source] Initializes the layer by decomposing a full tensor
Parameters: - tensortorch.Tensor
must be either a matrix or a tensor must verify
np.prod(tensor.shape) == np.prod(self.tensorized_shape)
- biastorch.Tensor or None, default is None
- decomposition_kwargsdict
optional dictionary of parameters to pass to the decomposition
-
init_from_linear
(weight, bias=None)[source] Initialise the TRL from the weights of a fully connected layer
-
full_weight
()[source] Return the reconstructed weights from the low_rank
Returns: - tensor :
weights recoonstructed from the low-rank ones learnt
-
get_decomposition
()[source] Returns the decomposition parametrizing the layer