tensorly.solvers.nnls
.active_set_nnls
- active_set_nnls(Utm, UtU, x=None, n_iter_max=100, tol=1e-07)[source]
Active set algorithm for non-negative least square solution, see [1]
Computes an approximate non-negative solution for Ux=m linear system.
- Parameters:
- Utmvectorized ndarray
Pre-computed product of the transposed of U and m
- UtUndarray
Pre-computed Kronecker product of the transposed of U and U
- xinit
Default: None
- n_iter_maxint
Maximum number of iteration Default: 100
- tolfloat
Early stopping criterion
- Returns:
- xndarray
Notes
This function solves following problem:
\[\begin{equation} \min_{x} \|Ux - m\|^2 \end{equation}\]According to [1], non-negativity-constrained least square estimation problem becomes:
\[\begin{equation} x' = Utm - UtU x \end{equation}\]References
[1]Bro, R., & De Jong, S. (1997). A fast non‐negativity‐constrained least squares algorithm. Journal of Chemometrics: A Journal of the Chemometrics Society, 11(5), 393-401.