tensorly.regression.tucker_regression.TuckerRegressor

class TuckerRegressor(weight_ranks, tol=1e-06, reg_W=1, n_iter_max=100, random_state=None, verbose=1)[source]

Tucker tensor regression

Learns a low rank Tucker weight for the regression

Parameters:
weight_ranksint list

dimension of each mode of the core Tucker weight

tolfloat

convergence value

reg_Wint, optional, default is 1

regularisation on the weights

n_iter_maxint, optional, default is 100

maximum number of iteration

random_stateNone, int or RandomState, optional, default is None
verboseint, default is 1

level of verbosity

fit(X, y)[source]

Fits the model to the data (X, y)

Parameters:
Xndarray of shape (n_samples, N1, …, NS)

tensor data

yarray of shape (n_samples)

labels associated with each sample

Returns:
self
get_params(**kwargs)[source]

Returns a dictionary of parameters

predict(X)[source]

Returns the predicted labels for a new data tensor

Parameters:
Xndarray

tensor data of shape (n_samples, N1, …, NS)

set_params(**parameters)[source]

Sets the value of the provided parameters