tensorly.regression.tucker_regression
.TuckerRegressor
- class TuckerRegressor(weight_ranks, tol=1e-06, reg_W=1, n_iter_max=100, random_state=None, verbose=1)[source]
Tucker tensor regression
Learns a low rank Tucker weight for the regression
- Parameters:
- weight_ranksint list
dimension of each mode of the core Tucker weight
- tolfloat
convergence value
- reg_Wint, optional, default is 1
regularisation on the weights
- n_iter_maxint, optional, default is 100
maximum number of iteration
- random_stateNone, int or RandomState, optional, default is None
- verboseint, default is 1
level of verbosity
- fit(X, y)[source]
Fits the model to the data (X, y)
- Parameters:
- Xndarray of shape (n_samples, N1, …, NS)
tensor data
- yarray of shape (n_samples)
labels associated with each sample
- Returns:
- self
- get_params(**kwargs)[source]
Returns a dictionary of parameters
- predict(X)[source]
Returns the predicted labels for a new data tensor
- Parameters:
- Xndarray
tensor data of shape (n_samples, N1, …, NS)
- set_params(**parameters)[source]
Sets the value of the provided parameters