tensorly.regression.cp_regression.CPRegressor

class CPRegressor(weight_rank, tol=1e-06, reg_W=1, n_iter_max=100, random_state=None, verbose=1)[source]

CP tensor regression

Learns a low rank CP tensor weight

Parameters:
weight_rankint

rank of the CP decomposition of the regression weights

tolfloat

convergence value

reg_Wfloat, optional, default is 1

l2 regularisation constant for the regression weights (\(reg_W * \sum_i ||factors[i]||_F^2\))

n_iter_maxint, optional, default is 100

maximum number of iteration

random_stateNone, int or RandomState, optional, default is None
verboseint, default is 1

level of verbosity

fit(X, y)[source]

Fits the model to the data (X, y)

Parameters:
Xtensor data of shape (n_samples, I_1, …, I_p)
ytensor of shape (n_samples, O_1, …, O_q)

labels associated with each sample

Returns:
self
get_params(**kwargs)[source]

Returns a dictionary of parameters

predict(X)[source]

Returns the predicted labels for a new data tensor

Parameters:
Xndarray

tensor data of shape (n_samples, I_1, …, I_p)

set_params(**parameters)[source]

Sets the value of the provided parameters