tensorly.decomposition
.tensor_train_matrix
- tensor_train_matrix(tensor, rank, svd='truncated_svd', verbose=False)[source]
Decompose a tensor into a matrix in tt-format
- Parameters:
- tensortensorized matrix
if your input matrix is of size (4, 9) and your tensorized_shape (2, 2, 3, 3) then tensor should be tl.reshape(matrix, (2, 2, 3, 3))
- rank‘same’, float or int tuple
if ‘same’ creates a decomposition with the same number of parameters as tensor
if float, creates a decomposition with rank x the number of parameters of tensor
otherwise, the actual rank to be used, e.g. (1, rank_2, …, 1) of size tensor.ndim//2. Note that boundary conditions dictate that the first rank = last rank = 1.
- svdstr, default is ‘truncated_svd’
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
- verboseboolean, optional
level of verbosity
- Returns:
- tt_matrix