import tensorly as tl
from ._base_decomposition import DecompositionMixin
from ..tt_tensor import validate_tt_rank, TTTensor
from ..tt_matrix import validate_tt_matrix_rank, TTMatrix
from ..tenalg.svd import svd_interface
[docs]
def tensor_train(input_tensor, rank, svd="truncated_svd", verbose=False):
"""TT decomposition via recursive SVD
Decomposes `input_tensor` into a sequence of order-3 tensors (factors)
-- also known as Tensor-Train decomposition [1]_.
Parameters
----------
input_tensor : tensorly.tensor
rank : {int, int list}
maximum allowable TT rank of the factors
if int, then this is the same for all the factors
if int list, then rank[k] is the rank of the kth factor
svd : str, default is 'truncated_svd'
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
verbose : boolean, optional
level of verbosity
Returns
-------
factors : TT factors
order-3 tensors of the TT decomposition
References
----------
.. [1] Ivan V. Oseledets. "Tensor-train decomposition", SIAM J. Scientific Computing, 33(5):2295–2317, 2011.
"""
rank = validate_tt_rank(tl.shape(input_tensor), rank=rank)
tensor_size = input_tensor.shape
n_dim = len(tensor_size)
unfolding = input_tensor
factors = [None] * n_dim
# Getting the TT factors up to n_dim - 1
for k in range(n_dim - 1):
# Reshape the unfolding matrix of the remaining factors
n_row = int(rank[k] * tensor_size[k])
unfolding = tl.reshape(unfolding, (n_row, -1))
# SVD of unfolding matrix
(n_row, n_column) = unfolding.shape
current_rank = min(n_row, n_column, rank[k + 1])
U, S, V = svd_interface(unfolding, n_eigenvecs=current_rank, method=svd)
rank[k + 1] = current_rank
# Get kth TT factor
factors[k] = tl.reshape(U, (rank[k], tensor_size[k], rank[k + 1]))
if verbose is True:
print(
"TT factor " + str(k) + " computed with shape " + str(factors[k].shape)
)
# Get new unfolding matrix for the remaining factors
unfolding = tl.reshape(S, (-1, 1)) * V
# Getting the last factor
(prev_rank, last_dim) = unfolding.shape
factors[-1] = tl.reshape(unfolding, (prev_rank, last_dim, 1))
if verbose is True:
print(
"TT factor "
+ str(n_dim - 1)
+ " computed with shape "
+ str(factors[n_dim - 1].shape)
)
return TTTensor(factors)
[docs]
def tensor_train_matrix(tensor, rank, svd="truncated_svd", verbose=False):
"""Decompose a tensor into a matrix in tt-format
Parameters
----------
tensor : tensorized matrix
if your input matrix is of size (4, 9) and your tensorized_shape (2, 2, 3, 3)
then tensor should be tl.reshape(matrix, (2, 2, 3, 3))
rank : 'same', float or int tuple
- if 'same' creates a decomposition with the same number of parameters as `tensor`
- if float, creates a decomposition with `rank` x the number of parameters of `tensor`
- otherwise, the actual rank to be used, e.g. (1, rank_2, ..., 1) of size tensor.ndim//2. Note that boundary conditions dictate that the first rank = last rank = 1.
svd : str, default is 'truncated_svd'
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
verbose : boolean, optional
level of verbosity
Returns
-------
tt_matrix
"""
order = tl.ndim(tensor)
n_input = order // 2 # (n_output = n_input)
if tl.ndim(tensor) != n_input * 2:
msg = "The tensor should have as many dimensions for inputs and outputs, i.e. order should be even "
msg += f"but got a tensor of order tl.ndim(tensor)={order} which is odd."
raise ValueError(msg)
in_shape = tl.shape(tensor)[:n_input]
out_shape = tl.shape(tensor)[n_input:]
if n_input == 1:
# A TTM with a single factor is just a matrix...
return TTMatrix([tensor.reshape(1, in_shape[0], out_shape[0], 1)])
new_idx = list(
[
idx
for tuple_ in zip(range(n_input), range(n_input, 2 * n_input))
for idx in tuple_
]
)
new_shape = list([a * b for (a, b) in zip(in_shape, out_shape)])
tensor = tl.reshape(tl.transpose(tensor, new_idx), new_shape)
factors = tensor_train(tensor, rank, svd=svd, verbose=verbose).factors
for i in range(len(factors)):
factors[i] = tl.reshape(
factors[i], (factors[i].shape[0], in_shape[i], out_shape[i], -1)
)
return TTMatrix(factors)
[docs]
class TensorTrain(DecompositionMixin):
"""Decompose a tensor into a matrix in tt-format
Parameters
----------
tensor : tensorized matrix
if your input matrix is of size (4, 9) and your tensorized_shape (2, 2, 3, 3)
then tensor should be tl.reshape(matrix, (2, 2, 3, 3))
rank : 'same', float or int tuple
- if 'same' creates a decomposition with the same number of parameters as `tensor`
- if float, creates a decomposition with `rank` x the number of parameters of `tensor`
- otherwise, the actual rank to be used, e.g. (1, rank_2, ..., 1) of size tensor.ndim//2. Note that boundary conditions dictate that the first rank = last rank = 1.
svd : str, default is 'truncated_svd'
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
verbose : boolean, optional
level of verbosity
Returns
-------
tt_matrix
"""
def __init__(self, rank, svd="truncated_svd", verbose=False):
self.rank = rank
self.svd = svd
self.verbose = verbose
def fit_transform(self, tensor):
self.decomposition_ = tensor_train(
tensor, rank=self.rank, svd=self.svd, verbose=self.verbose
)
return self.decomposition_
[docs]
class TensorTrainMatrix(DecompositionMixin):
"""TT decomposition via recursive SVD
Decomposes `input_tensor` into a sequence of order-3 tensors (factors)
-- also known as Tensor-Train decomposition [1]_.
Parameters
----------
input_tensor : tensorly.tensor
rank : {int, int list}
maximum allowable TT rank of the factors
if int, then this is the same for all the factors
if int list, then rank[k] is the rank of the kth factor
svd : str, default is 'truncated_svd'
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
verbose : boolean, optional
level of verbosity
Returns
-------
factors : TT factors
order-3 tensors of the TT decomposition
References
----------
.. [1] Ivan V. Oseledets. "Tensor-train decomposition", SIAM J. Scientific Computing, 33(5):2295–2317, 2011.
"""
def __init__(self, rank, svd="truncated_svd", verbose=False):
self.rank = rank
self.svd = svd
self.verbose = verbose
def fit_transform(self, tensor):
self.decomposition_ = tensor_train_matrix(
tensor, rank=self.rank, svd=self.svd, verbose=self.verbose
)
return self.decomposition_