# Source code for tensorly.metrics.similarity

```
import tensorly as tl
# Authors: Hratch Baghdassarian <hmbaghdassarian@gmail.com>, Erick Armingol <earmingol14@gmail.com>
# similarity metrics for tensor decompositions
[docs]def correlation_index(
factors_1: list, factors_2: list, tol: float = 5e-16, method: str = "stacked"
) -> float:
"""CorrIndex implementation to assess tensor decomposition outputs.
From [1] Sobhani et al 2022 (https://doi.org/10.1016/j.sigpro.2022.108457).
Metric is scaling and column-permutation invariant, wherein each column is a factor.
Parameters
----------
factors_1 : list
The loading/factor matrices [A_1 ... A_N] for a low-rank tensor from its factors, output from first decomposition
factors_2 : list
The loading/factor matrices [A_1 ... A_N] for a low-rank tensor from its factors, output from second decomposition
tol : float, optional
Precision threshold below which to call the CorrIndex score 0, by default 5e-16
method : str, optional
Method to obtain the CorrIndex by comparing the A matrices from two decompositions, by default 'stacked'.
Possible options are:
- 'stacked' : The original method implemented in [1]. Here all A matrices from the same decomposition are
vertically concatenated, building a big A matrix for each decomposition.
- 'max_score' : This computes the CorrIndex for each pair of A matrices (i.e. between A_1 in factors_1 and
factors_2, between A_2 in factors_1 and factors_2, and so on). Then the max score is
selected (the most conservative approach). In other words, it selects the max score among the
CorrIndexes computed dimension-wise.
- 'min_score' : Similar to 'max_score', but the min score is selected (the least conservative approach).
- 'avg_score' : Similar to 'max_score', but the avg score is selected.
Returns
-------
score : float
CorrIndex metric [0,1]; lower score indicates higher similarity between matrices
"""
# check input factors shape
for factors in [factors_1, factors_2]:
if len({tl.shape(A)[1] for A in factors}) != 1:
raise ValueError(
"Factors should be a list of loading matrices of the same rank"
)
# check method
options = ["stacked", "max_score", "min_score", "avg_score"]
if method not in options:
raise ValueError(f"The `method` must be either option among {options}")
if method == "stacked":
# vertically stack loading matrices -- shape sum(tensor.shape)xR)
X_1 = [tl.concatenate(factors_1, 0)]
X_2 = [tl.concatenate(factors_2, 0)]
else:
X_1 = factors_1
X_2 = factors_2
for x1, x2 in zip(X_1, X_2):
if tl.shape(x1) != tl.shape(x2):
raise ValueError("Factor matrices should be of the same shapes")
# normalize columns to L2 norm - even if ran decomposition with normalize_factors=True
col_norm_1 = [tl.norm(x1, axis=0) for x1 in X_1]
col_norm_2 = [tl.norm(x2, axis=0) for x2 in X_2]
for cn1, cn2 in zip(col_norm_1, col_norm_2):
if tl.any(cn1 == 0) or tl.any(cn2 == 0):
raise ValueError("Column norms must be non-zero")
X_1 = [x1 / cn1 for x1, cn1 in zip(X_1, col_norm_1)]
X_2 = [x2 / cn2 for x2, cn2 in zip(X_2, col_norm_2)]
corr_idxs = [
_compute_correlation_index(x1, x2, tol=tol) for x1, x2 in zip(X_1, X_2)
]
if method == "stacked":
score = corr_idxs[0]
elif method == "max_score":
score = tl.max(corr_idxs)
elif method == "min_score":
score = tl.min(corr_idxs)
elif method == "avg_score":
score = tl.mean(corr_idxs)
else:
score = 1.0
return score
def _compute_correlation_index(x1: list, x2: list, tol: float = 5e-16) -> float:
"""Computes the CorrIndex from the L2-normalized A matrices.
Parameters
----------
x1 : list
A list containing normalized A matrix(ces) from the first tensor decomposition.
x2 : list
A list containing normalized A matrix(ces) from the first tensor decomposition.
tol : float, optional
Precision threshold below which to call the CorrIndex score 0, by default 5e-16
Returns
-------
score : float
CorrIndex metric [0,1]; lower score indicates higher similarity between matrices
"""
# generate the correlation index input
c_prod_mtx = tl.abs(tl.matmul(tl.conj(tl.transpose(x1)), x2))
# correlation index scoring
n_elements = tl.shape(c_prod_mtx)[1] + tl.shape(c_prod_mtx)[0]
score = (1 / (n_elements)) * (
tl.sum(tl.abs(tl.max(c_prod_mtx, 1) - 1))
+ tl.sum(tl.abs(tl.max(c_prod_mtx, 0) - 1))
)
if score < tol:
score = 0
return score
```