tltorch.factorized_layers.TRL¶
- class tltorch.factorized_layers.TRL(input_shape, output_shape, bias=False, verbose=0, factorization='cp', rank='same', n_layers=1, device=None, dtype=None, **kwargs)[source]¶
- Tensor Regression Layers - Parameters:
- input_shapeint iterable
- shape of the input, excluding batch size 
- output_shapeint iterable
- shape of the output, excluding batch size 
- verboseint, default is 0
- level of verbosity 
 
 - References [1]- Tensor Regression Networks, Jean Kossaifi, Zachary C. Lipton, Arinbjorn Kolbeinsson, Aran Khanna, Tommaso Furlanello, Anima Anandkumar, JMLR, 2020. - Methods - forward(x)- Performs a forward pass - init_from_linear(linear[, unsqueezed_modes])- Initialise the TRL from the weights of a fully connected layer - init_from_random([decompose_full_weight])- Initialize the module randomly - init_from_random(decompose_full_weight=False)[source]¶
- Initialize the module randomly - Parameters:
- decompose_full_weightbool, default is False
- if True, constructs a full weight tensor and decomposes it to initialize the factors otherwise, the factors are directly initialized randomlys 
 
 
 - init_from_linear(linear, unsqueezed_modes=None, **kwargs)[source]¶
- Initialise the TRL from the weights of a fully connected layer - Parameters:
- lineartorch.nn.Linear
- unsqueezed_modesint list or None
- For Tucker factorization, this allows to replace pooling layers and instead learn the average pooling for the specified modes (“unsqueezed_modes”). for factorization=’Tucker’ only