Source code for tltorch.factorized_layers.factorized_convolution

"""
Higher Order Convolution with CP decompositon
"""

# Author: Jean Kossaifi
# License: BSD 3 clause

import warnings
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

import tensorly as tl
tl.set_backend('pytorch')

from ..functional.convolution import _get_factorized_conv
from ..factorized_tensors import FactorizedTensor, CPTensor, TTTensor


def _ensure_list(order, value):
    """Ensures that `value` is a list of length `order`

    If `value` is an int, turns it into a list ``[value]*order``
    """
    if isinstance(value, int):
        return [value]*order
    assert len(value) == order
    return value

def _ensure_array(layers_shape, order, value, one_per_order=True):
    """Ensures that `value` is an array

    Parameters
    ----------
    layers_shape : tuple
        shape of the layer (n_weights)
    order : int
        order of the convolutional layer
    value : np.ndarray or int
        value to be checked
    one_per_order : bool, optional
        if true, then we must have one value per mode of the convolution
        otherwise, a single value per factorized layer is needed
        by default True

    Returns
    -------
    np.ndarray
        if one_per_order, of shape layers_shape
        otherwise, of shape (*layers_shape, order)
    """
    if one_per_order:
        target_shape = layers_shape + (order, )
    else:
        target_shape = layers_shape

    if isinstance(value, np.ndarray):
        assert value.shape == target_shape
        return value

    if isinstance(value, int):
        array = np.ones(target_shape, dtype=np.int32)*value
    else:
        assert len(value) == order
        array = np.ones(target_shape, dtype=np.int32)
        array[..., :] = value
    return array

def kernel_shape_to_factorization_shape(factorization, kernel_shape):
    """Returns the shape of the factorized weights to create depending on the factorization    
    """
    # For the TT case, the decomposition has a different shape than the kernel.
    if factorization.lower() == 'tt':
        kernel_shape = list(kernel_shape)
        out_channel = kernel_shape.pop(0)
        kernel_shape.append(out_channel)
        return tuple(kernel_shape)

    # Other decompositions require no modification
    return kernel_shape

def factorization_shape_to_kernel_shape(factorization, factorization_shape):
    """Returns a convolutional kernel shape rom a factorized tensor shape
    """
    if factorization.lower() == 'tt':
        kernel_shape = list(factorization_shape)
        out_channel = kernel_shape.pop(-1)
        kernel_shape = [out_channel] + kernel_shape
        return tuple(kernel_shape)
    return factorization_shape

def kernel_to_tensor(factorization, kernel):
    """Returns a convolutional kernel ready to be factorized
    """
    if factorization.lower() == 'tt':
        kernel = tl.moveaxis(kernel, 0, -1)
    return kernel

def tensor_to_kernel(factorization, tensor):
    """Returns a kernel from a tensor factorization
    """
    if factorization.lower() == 'tt':
        tensor = tl.moveaxis(tensor, -1, 0)
    return tensor


[docs] class FactorizedConv(nn.Module): """Create a factorized convolution of arbitrary order """ _version = 1 def __init__(self, in_channels, out_channels, kernel_size, order=None, stride=1, padding=0, dilation=1, bias=False, has_bias=False, n_layers=1, factorization='cp', rank='same', implementation='factorized', fixed_rank_modes=None, device=None, dtype=None): super().__init__() # Check that order and kernel size are well defined and match if isinstance(kernel_size, int): if order is None: raise ValueError(f'If int given for kernel_size, order (dimension of the convolution) should also be provided.') if not isinstance(order, int) or order <= 0: raise ValueError(f'order should be the (positive integer) order of the convolution' f'but got order={order} of type {type(order)}.') else: kernel_size = (kernel_size, ) * order else: kernel_size = tuple(kernel_size) order = len(kernel_size) self.order = order self.kernel_size = kernel_size self.in_channels = in_channels self.out_channels = out_channels self.implementation = implementation self.input_rank = rank self.n_layers = n_layers self.factorization = factorization # Shape to insert if multiple layers are parametrized if isinstance(n_layers, int): if n_layers == 1: layers_shape = () else: layers_shape = (n_layers, ) else: layers_shape = n_layers self.layers_shape = layers_shape # tensor of values for each parametrized conv self.padding = _ensure_array(layers_shape, order, padding) self.stride = _ensure_array(layers_shape, order, stride) self.dilation = _ensure_array(layers_shape, order, dilation) self.has_bias = _ensure_array(layers_shape, order, has_bias, one_per_order=False) if bias: self.bias = nn.Parameter(torch.empty(*layers_shape, out_channels, device=device, dtype=dtype)) else: self.register_parameter('bias', None) if isinstance(factorization, FactorizedTensor): self.weight = factorization.to(device).to(dtype) kernel_shape = factorization_shape_to_kernel_shape(factorization._name, factorization.shape) else: kernel_shape = (out_channels, in_channels) + kernel_size # Some factorizations require permuting the dimensions, handled by kernel_shape_to_factorization_shape kernel_shape = kernel_shape_to_factorization_shape(factorization, kernel_shape) # In case we are parametrizing multiple layers factorization_shape = layers_shape + kernel_shape # For Tucker decomposition, we may want to not decomposed spatial dimensions if fixed_rank_modes is not None: if factorization.lower() != 'tucker': warnings.warn(f'Got fixed_rank_modes={fixed_rank_modes} which is only used for factorization=tucker but got factorization={factorization}.') elif fixed_rank_modes== 'spatial': fixed_rank_modes = list(range(2 + len(layers_shape), 2+len(layers_shape)+order)) self.weight = FactorizedTensor.new(factorization_shape, rank=rank, factorization=factorization, fixed_rank_modes=fixed_rank_modes, device=device, dtype=dtype) self.rank = self.weight.rank self.shape = self.weight.shape self.kernel_shape = kernel_shape # We pre-select the forward function to not waste time doing the check at each forward pass self.forward_fun = _get_factorized_conv(self.weight, self.implementation)
[docs] def forward(self, x, indices=0): # Single layer parametrized if self.n_layers == 1: if indices == 0: return self.forward_fun(x, self.weight(), bias=self.bias, stride=self.stride.tolist(), padding=self.padding.tolist(), dilation=self.dilation.tolist()) else: raise ValueError(f'Only one convolution was parametrized (n_layers=1) but tried to access {indices}.') # Multiple layers parameterized if isinstance(self.n_layers, int): if not isinstance(indices, int): raise ValueError(f'Expected indices to be in int but got indices={indices}' f', but this conv was created with n_layers={self.n_layers}.') elif len(indices) != len(self.n_layers): raise ValueError(f'Got indices={indices}, but this conv was created with n_layers={self.n_layers}.') bias = self.bias[indices] if self.has_bias[indices] else None return self.forward_fun(x, self.weight(indices), bias=bias, stride=self.stride[indices].tolist(), padding=self.padding[indices].tolist(), dilation=self.dilation[indices].tolist())
def reset_parameters(self, std=0.02): if self.bias is not None: self.bias.data.zero_() self.weight = self.weight.normal_(0, std)
[docs] def set(self, indices, stride=1, padding=0, dilation=1, bias=None): """Sets the parameters of the conv self[indices] """ self.padding[indices] = _ensure_list(self.order, padding) self.stride[indices] = _ensure_list(self.order, stride) self.dilation[indices] = _ensure_list(self.order, dilation) if bias is not None: self.bias.data[indices] = bias.data self.has_bias[indices] = True
[docs] def get_conv(self, indices): """Returns a sub-convolutional layer from the joint parametrize main-convolution The parametrization of sub-convolutional layers is shared with the main one. """ if self.n_layers == 1: raise ValueError('A single convolution is parametrized, directly use the main class.') if self.has_bias[indices]: bias = self.bias else: bias = None return SubFactorizedConv(self, indices)
# return SubFactorizedConv(self, indices, self.weight, bias) def __getitem__(self, indices): return self.get_conv(indices) @classmethod def from_factorization(cls, factorization, implementation='factorized', stride=1, padding=0, dilation=1, bias=None, n_layers=1): kernel_shape = factorization_shape_to_kernel_shape(factorization._name, factorization.shape) if n_layers == 1: out_channels, in_channels, *kernel_size = kernel_shape elif isinstance(n_layers, int): layer_size, out_channels, in_channels, *kernel_size = kernel_shape assert layer_size == n_layers else: layer_size = kernel_shape[:len(n_layers)] out_channels, in_channels, *kernel_size = kernel_shape[len(n_layers):] order = len(kernel_size) instance = cls(in_channels, out_channels, kernel_size, order=order, implementation=implementation, padding=padding, stride=stride, bias=(bias is not None), n_layers=n_layers, dilation=dilation, factorization=factorization, rank=factorization.rank) instance.weight = factorization if bias is not None: instance.bias.data = bias return instance
[docs] @classmethod def from_conv(cls, conv_layer, rank='same', implementation='reconstructed', factorization='CP', decompose_weights=True, decomposition_kwargs=dict(), fixed_rank_modes=None, **kwargs): """Create a Factorized convolution from a regular convolutional layer Parameters ---------- conv_layer : torch.nn.ConvND rank : rank of the decomposition, default is 'same' implementation : str, default is 'reconstructed' decomposed_weights : bool, default is True if True, the convolutional kernel is decomposed to initialize the factorized convolution otherwise, the factorized convolution's parameters are initialized randomly decomposition_kwargs : dict parameters passed directly on to the decompoosition function if `decomposed_weights` is True Returns ------- New instance of the factorized convolution with equivalent weightss Todo ---- Check that the decomposition of the given convolution and cls is the same. """ padding = conv_layer.padding out_channels, in_channels, *kernel_size = conv_layer.weight.shape stride = conv_layer.stride[0] bias = conv_layer.bias is not None dilation = conv_layer.dilation instance = cls(in_channels, out_channels, kernel_size, factorization=factorization, implementation=implementation, rank=rank, dilation=dilation, padding=padding, stride=stride, bias=bias, fixed_rank_modes=fixed_rank_modes, **kwargs) if decompose_weights: if conv_layer.bias is not None: instance.bias.data = conv_layer.bias.data with torch.no_grad(): kernel_tensor = kernel_to_tensor(factorization, conv_layer.weight.data) instance.weight.init_from_tensor(kernel_tensor, **decomposition_kwargs) else: instance.reset_parameters() return instance
@classmethod def from_conv_list(cls, conv_list, rank='same', implementation='reconstructed', factorization='cp', decompose_weights=True, decomposition_kwargs=dict(), **kwargs): conv_layer = conv_list[0] padding = conv_layer.padding out_channels, in_channels, *kernel_size = conv_layer.weight.shape stride = conv_layer.stride[0] bias = True dilation = conv_layer.dilation instance = cls(in_channels, out_channels, kernel_size, implementation=implementation, rank=rank, factorization=factorization, padding=padding, stride=stride, bias=bias, dilation=dilation, n_layers=len(conv_list), fixed_rank_modes=None, **kwargs) if decompose_weights: with torch.no_grad(): weight_tensor = torch.stack([kernel_to_tensor(factorization, layer.weight.data) for layer in conv_list]) instance.weight.init_from_tensor(weight_tensor, **decomposition_kwargs) else: instance.reset_parameters() for i, layer in enumerate(conv_list): instance.set(i, stride=layer.stride, padding=layer.padding, dilation=layer.dilation, bias=layer.bias) # instance.padding[i] = _ensure_list(instance.order, layer.padding) # instance.stride[i] = _ensure_list(instance.order, layer.stride) # instance.dilation[i] = _ensure_list(instance.order, layer.dilation) return instance
[docs] def transduct(self, kernel_size, mode=0, padding=0, stride=1, dilation=1, fine_tune_transduction_only=True): """Transduction of the factorized convolution to add a new dimension Parameters ---------- kernel_size : int size of the additional dimension mode : where to insert the new dimension, after the channels, default is 0 by default, insert the new dimensions before the existing ones (e.g. add time before height and width) padding : int, default is 0 stride : int: default is 1 Returns ------- self """ if fine_tune_transduction_only: for param in self.parameters(): param.requires_grad = False mode += len(self.layers_shape) self.order += 1 padding = np.ones(self.layers_shape + (1, ), dtype=int)*padding stride = np.ones(self.layers_shape + (1, ), dtype=int)*stride dilation = np.ones(self.layers_shape + (1, ), dtype=int)*dilation self.padding = np.concatenate([self.padding[..., :mode], padding, self.padding[..., mode:]], len(self.layers_shape)) self.stride = np.concatenate([self.stride[..., :mode], stride, self.stride[..., mode:]], len(self.layers_shape)) self.dilation = np.concatenate([self.dilation[..., :mode], dilation, self.dilation[..., mode:]], len(self.layers_shape)) self.kernel_size = self.kernel_size[:mode] + (kernel_size,) + self.kernel_size[mode:] self.kernel_shape = self.kernel_shape[:mode+2] + (kernel_size,) + self.kernel_shape[mode+2:] # Just to the frame-wise conv if adding time if isinstance(self.weight, CPTensor): new_factor = torch.zeros(kernel_size, self.weight.rank) new_factor[kernel_size//2, :] = 1 transduction_mode = mode + 2 elif isinstance(self.weight, TTTensor): new_factor = None transduction_mode = mode + 1 else: transduction_mode = mode + 2 new_factor = None self.weight = self.weight.transduct(kernel_size, transduction_mode, new_factor) return self
[docs] def extra_repr(self): s = (f'in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}' f', rank={self.rank}, order={self.order}') if self.n_layers == 1: s += ', ' if self.stride.tolist() != [1] * self.order: s += f'stride={self.stride.tolist()}, ' if self.padding.tolist() != [0] * self.order: s += f'padding={self.padding.tolist()}, ' if self.dilation.tolist() != [1] * self.order: s += f'dilation={self.dilation.tolist()}, ' if self.bias is None: s += f'bias=False' return s for idx in np.ndindex(self.n_layers): s += f'\n * Conv{idx}: ' if self.stride[idx].tolist() != [1] * self.order: s += f'stride={self.stride[idx].tolist()}, ' if self.padding[idx].tolist() != [0] * self.order: s += f'padding={self.padding[idx].tolist()}, ' if self.dilation[idx].tolist() != [1] * self.order: s += f'dilation={self.dilation[idx].tolist()}, ' if self.bias is None: s += f'bias=False' return s
class SubFactorizedConv(nn.Module): """Class representing one of the convolutions from the mother joint factorized convolution Parameters ---------- Notes ----- This relies on the fact that nn.Parameters are not duplicated: if the same nn.Parameter is assigned to multiple modules, they all point to the same data, which is shared. """ def __init__(self, main_conv, indices): super().__init__() self.main_conv = main_conv self.indices = indices def forward(self, x): return self.main_conv.forward(x, self.indices) def __repr__(self): msg = f'SubConv {self.indices} from main factorized layer.' msg += f'\n {self.__class__.__name__}(' msg += f'in_channels={self.main_conv.in_channels}, out_channels={self.main_conv.out_channels}' if self.main_conv.stride[self.indices].tolist() != [1] * self.main_conv.order: msg += f', stride={self.main_conv.stride[self.indices].tolist()}' if self.main_conv.padding[self.indices].tolist() != [0] * self.main_conv.order: msg += f', padding={self.main_conv.padding[self.indices].tolist()}' if self.main_conv.dilation[self.indices].tolist() != [1] * self.main_conv.order: msg += f', dilation={self.main_conv.dilation[self.indices].tolist()}' if self.main_conv.has_bias[self.indices]: msg += f', bias=False' msg += ')' return msg