tensorly.partial_svd

partial_svd(matrix, n_eigenvecs=None, random_state=None, **kwargs)

Computes a fast partial SVD on matrix

If n_eigenvecs is specified, sparse eigendecomposition is used on either matrix.dot(matrix.T) or matrix.T.dot(matrix).

Parameters
matrixtensor

A 2D tensor.

n_eigenvecsint, optional, default is None

If specified, number of eigen[vectors-values] to return.

random_state: {None, int, np.random.RandomState}

If specified, use it for sampling starting vector in a partial SVD(scipy.sparse.linalg.eigsh)

**kwargsoptional

kwargs are used to absorb the difference of parameters among the other SVD functions

Returns
U2-D tensor, shape (matrix.shape[0], n_eigenvecs)

Contains the right singular vectors

S1-D tensor, shape (n_eigenvecs, )

Contains the singular values of matrix

V2-D tensor, shape (n_eigenvecs, matrix.shape[1])

Contains the left singular vectors