Source code for tensorly.contrib.decomposition._tt_cross

import tensorly as tl
from ...tt_tensor import tt_to_tensor
import numpy as np


[docs] def tensor_train_cross(input_tensor, rank, tol=1e-4, n_iter_max=100, random_state=None): """TT (tensor-train) decomposition via cross-approximation (TTcross) [1] Decomposes `input_tensor` into a sequence of order-3 tensors of given rank. (factors/cores) Rather than directly decompose the whole tensor, we sample fibers based on skeleton decomposition. We initialize a random tensor-train and sweep from left to right and right to left. On each core, we shape the core as a matrix and choose the fibers indices by finding maximum-volume submatrix and update the core. * Advantage: faster The main advantage of TTcross is that it doesn't need to evaluate all the entries of the tensor. For a tensor_shape^tensor_order tensor, SVD needs O(tensor_shape^tensor_order) runtime, but TTcross' runtime is linear in tensor_shape and tensor_order, which makes it feasible in high dimension. * Disadvantage: less accurate TTcross may underestimate the error, since it only evaluates partial entries of the tensor. Besides, in contrast to its practical fast performance, there is no theoretical guarantee of it convergence. Parameters ---------- input_tensor : tensorly.tensor The tensor to decompose. rank : {int, int list} maximum allowable TT rank of the factors if int, then this is the same for all the factors if int list, then rank[k] is the rank of the kth factor tol : float accuracy threshold for outer while-loop n_iter_max : int maximum iterations of outer while-loop (the 'crosses' or 'sweeps' sampled) random_state : {None, int, np.random.RandomState} Returns ------- factors : TT factors order-3 tensors of the TT decomposition Examples -------- Generate a 5^3 tensor, and decompose it into tensor-train of 3 factors, with rank = [1,3,3,1] >>> tensor = tl.tensor(np.arange(5**3).reshape(5,5,5)) >>> rank = [1, 3, 3, 1] >>> factors = tensor_train_cross(tensor, rank) >>> # print the first core: >>> print(factors[0]) [[[ 24. 0. 4.] [ 49. 25. 29.] [ 74. 50. 54.] [ 99. 75. 79.] [124. 100. 104.]]] Notes ----- Pseudo-code [2]: 1. Initialization tensor_order cores and column indices 2. while (error > tol) 3. update the tensor-train from left to right: .. code:: python for Core 1 to Core tensor_order: approximate the skeleton-decomposition by QR and maxvol 4. update the tensor-train from right to left: .. code:: python for Core tensor_order to Core 1 approximate the skeleton-decomposition by QR and maxvol 5. end while Acknowledgement: the main body of the code is modified based on TensorToolbox by Daniele Bigoni. References ---------- .. [1] Ivan Oseledets and Eugene Tyrtyshnikov. Tt-cross approximation for multidimensional arrays. LinearAlgebra and its Applications, 432(1):70–88, 2010. .. [2] Sergey Dolgov and Robert Scheichl. A hybrid alternating least squares–tt cross algorithm for parametricpdes. arXiv preprint arXiv:1707.04562, 2017. """ # Check user input for errors tensor_shape = tl.shape(input_tensor) tensor_order = tl.ndim(input_tensor) if isinstance(rank, int): rank = [rank] * (tensor_order + 1) elif tensor_order + 1 != len(rank): message = ( "Provided incorrect number of ranks. Should verify " + f"len(rank) == tl.ndim(tensor)+1, but len(rank) = {len(rank)} " + f"while tl.ndim(tensor) + 1 = {tensor_order}" ) raise (ValueError(message)) # Make sure iter's not a tuple but a list rank = list(rank) # Initialize rank if rank[0] != 1: message = f"Provided rank[0] == {rank[0]} but boundary conditions dictate rank[0] == rank[-1] == 1." raise ValueError(message) if rank[-1] != 1: message = f"Provided rank[-1] == {rank[-1]} but boundary conditions dictate rank[0] == rank[-1] == 1." raise ValueError(message) # list col_idx: column indices (right indices) for skeleton-decomposition: indicate which columns used in each core. # list row_idx: row indices (left indices) for skeleton-decomposition: indicate which rows used in each core. # Initialize indice: random selection of column indices rng = tl.check_random_state(random_state) col_idx = [None] * tensor_order for k_col_idx in range(tensor_order - 1): col_idx[k_col_idx] = [] for i in range(rank[k_col_idx + 1]): newidx = tuple( [ rng.randint(tensor_shape[j]) for j in range(k_col_idx + 1, tensor_order) ] ) while newidx in col_idx[k_col_idx]: newidx = tuple( [ rng.randint(tensor_shape[j]) for j in range(k_col_idx + 1, tensor_order) ] ) col_idx[k_col_idx].append(newidx) # Initialize the cores of tensor-train factor_old = [ tl.zeros((rank[k], tensor_shape[k], rank[k + 1]), **tl.context(input_tensor)) for k in range(tensor_order) ] factor_new = [ tl.tensor( rng.random_sample((rank[k], tensor_shape[k], rank[k + 1])), **tl.context(input_tensor), ) for k in range(tensor_order) ] iter = 0 error = tl.norm(tt_to_tensor(factor_old) - tt_to_tensor(factor_new), 2) threshold = tol * tl.norm(tt_to_tensor(factor_new), 2) for iter in range(n_iter_max): if error < threshold: break factor_old = factor_new factor_new = [None for i in range(tensor_order)] ###################################### # left-to-right step left_to_right_fiberlist = [] # list row_idx: list of (tensor_order-1) of lists of left indices row_idx = [[()]] for k in range(tensor_order - 1): (next_row_idx, fibers_list) = left_right_ttcross_step( input_tensor, k, rank, row_idx, col_idx ) # update row indices left_to_right_fiberlist.extend(fibers_list) row_idx.append(next_row_idx) # end left-to-right step ############################################### ############################################### # right-to-left step right_to_left_fiberlist = [] # list col_idx: list (tensor_order-1) of lists of right indices col_idx = [None] * tensor_order col_idx[-1] = [()] for k in range(tensor_order, 1, -1): (next_col_idx, fibers_list, Q_skeleton) = right_left_ttcross_step( input_tensor, k, rank, row_idx, col_idx ) # update col indices right_to_left_fiberlist.extend(fibers_list) col_idx[k - 2] = next_col_idx # Compute cores try: factor_new[k - 1] = tl.transpose(Q_skeleton) factor_new[k - 1] = tl.reshape( factor_new[k - 1], (rank[k - 1], tensor_shape[k - 1], rank[k]) ) except: # The rank should not be larger than the input tensor's size raise ( ValueError( "The rank is too large compared to the size of the tensor. Try with small rank." ) ) # Add the last core idx = (slice(None, None, None),) + tuple(zip(*col_idx[0])) core = input_tensor[idx] core = tl.reshape(core, (tensor_shape[0], 1, rank[1])) core = tl.transpose(core, (1, 0, 2)) factor_new[0] = core # end right-to-left step ################################################ # check the error for while-loop error = tl.norm(tt_to_tensor(factor_old) - tt_to_tensor(factor_new), 2) threshold = tol * tl.norm(tt_to_tensor(factor_new), 2) # check convergence if iter >= n_iter_max: raise ValueError("Maximum number of iterations reached.") if tl.norm(tt_to_tensor(factor_old) - tt_to_tensor(factor_new), 2) > tol * tl.norm( tt_to_tensor(factor_new), 2 ): raise ValueError("Low Rank Approximation algorithm did not converge.") return factor_new
def left_right_ttcross_step(input_tensor, k, rank, row_idx, col_idx): """Compute the next (right) core's row indices by QR decomposition. For the current Tensor train core, we use the row indices and col indices to extract the entries from the input tensor and compute the next core's row indices by QR and max volume algorithm. Parameters ---------- k: int the actual sweep iteration rank: list of int list of upper ranks (tensor_order) row_idx: list of list of int list of (tensor_order-1) of lists of left indices col_idx: list of list of int list of (tensor_order-1) of lists of right indices Returns ------- next_row_idx : list of int the list of new row indices, fibers_list : list of slice the used fibers, Q_skeleton : matrix approximation of Q as product of Q and inverse of its maximum volume submatrix """ tensor_shape = tl.shape(input_tensor) tensor_order = tl.ndim(input_tensor) fibers_list = [] # Extract fibers according to the row and col indices for i in range(rank[k]): for j in range(rank[k + 1]): fiber = row_idx[k][i] + (slice(None, None, None),) + col_idx[k][j] fibers_list.append(fiber) if k == 0: # Is[k] will be empty idx = (slice(None, None, None),) + tuple(zip(*col_idx[k])) else: idx = [[] for i in range(tensor_order)] for lidx in row_idx[k]: for ridx in col_idx[k]: for j, jj in enumerate(lidx): idx[j].append(jj) for j, jj in enumerate(ridx): idx[len(lidx) + 1 + j].append(jj) idx[k] = slice(None, None, None) idx = tuple(idx) # Extract the core core = input_tensor[idx] # shape the core as a 3-tensor_order cube if k == 0: core = tl.reshape(core, (tensor_shape[k], rank[k], rank[k + 1])) core = tl.transpose(core, (1, 0, 2)) else: core = tl.reshape(core, (rank[k], rank[k + 1], tensor_shape[k])) core = tl.transpose(core, (0, 2, 1)) # merge r_k and n_k, get a matrix core = tl.reshape(core, (rank[k] * tensor_shape[k], rank[k + 1])) # Compute QR decomposition (Q, R) = tl.qr(core) # Maxvol (I, _) = maxvol(Q) # Retrive indices in folded tensor new_idx = [ np.unravel_index(idx, [rank[k], tensor_shape[k]]) for idx in I ] # First retrive idx in folded core next_row_idx = [ row_idx[k][ic[0]] + (ic[1],) for ic in new_idx ] # Then reconstruct the idx in the tensor return (next_row_idx, fibers_list) def right_left_ttcross_step(input_tensor, k, rank, row_idx, col_idx): """Compute the next (left) core's col indices by QR decomposition. For the current Tensor train core, we use the row indices and col indices to extract the entries from the input tensor and compute the next core's col indices by QR and max volume algorithm. Parameters ---------- k: int the actual sweep iteration rank: list of int list of upper rank (tensor_order) row_idx: list of list of int list of (tensor_order-1) of lists of left indices col_idx: list of list of int list of (tensor_order-1) of lists of right indices Returns ------- next_col_idx : list of int the list of new col indices, fibers_list : list of slice the used fibers, Q_skeleton : matrix approximation of Q as product of Q and inverse of its maximum volume submatrix """ tensor_shape = tl.shape(input_tensor) tensor_order = tl.ndim(input_tensor) fibers_list = [] # Extract fibers for i in range(rank[k - 1]): for j in range(rank[k]): fiber = row_idx[k - 1][i] + (slice(None, None, None),) + col_idx[k - 1][j] fibers_list.append(fiber) if k == tensor_order: # Is[k] will be empty idx = tuple(zip(*row_idx[k - 1])) + (slice(None, None, None),) else: idx = [[] for i in range(tensor_order)] for lidx in row_idx[k - 1]: for ridx in col_idx[k - 1]: for j, jj in enumerate(lidx): idx[j].append(jj) for j, jj in enumerate(ridx): idx[len(lidx) + 1 + j].append(jj) idx[k - 1] = slice(None, None, None) idx = tuple(idx) core = input_tensor[idx] # shape the core as a 3-tensor_order cube core = tl.reshape(core, (rank[k - 1], rank[k], tensor_shape[k - 1])) core = tl.transpose(core, (0, 2, 1)) # merge n_{k-1} and r_k, get a matrix core = tl.reshape(core, (rank[k - 1], tensor_shape[k - 1] * rank[k])) core = tl.transpose(core) # Compute QR decomposition (Q, R) = tl.qr(core) # Maxvol (J, Q_inv) = maxvol(Q) Q_inv = tl.tensor(Q_inv) Q_skeleton = tl.dot(Q, Q_inv) # Retrive indices in folded tensor new_idx = [ np.unravel_index(idx, [tensor_shape[k - 1], rank[k]]) for idx in J ] # First retrive idx in folded core next_col_idx = [ (jc[0],) + col_idx[k - 1][jc[1]] for jc in new_idx ] # Then reconstruct the idx in the tensor return (next_col_idx, fibers_list, Q_skeleton) def maxvol(A): """Find the rxr submatrix of maximal volume in A(nxr), n>=r We want to decompose matrix A as `A = A[:,J] * (A[I,J])^-1 * A[I,:]`. This algorithm helps us find this submatrix A[I,J] from A, which has the largest determinant. We greedily find vector of max norm, and subtract its projection from the rest of rows. Parameters ---------- A: matrix The matrix to find maximal volume Returns ------- row_idx: list of int is the list or rows of A forming the matrix with maximal volume, A_inv: matrix is the inverse of the matrix with maximal volume. References ---------- S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, N. L. Zamarashkin. How to find a good submatrix.Goreinov, S. A., et al. Matrix Methods: Theory, Algorithms and Applications: Dedicated to the Memory of Gene Golub. 2010. 247-256. Ali Çivril, Malik Magdon-Ismail On selecting a maximum volume sub-matrix of a matrix and related problems Theoretical Computer Science. Volume 410, Issues 47–49, 6 November 2009, Pages 4801-4811 """ (n, r) = tl.shape(A) # The index of row of the submatrix row_idx = tl.zeros(r, dtype=tl.int64) # Rest of rows / unselected rows rest_of_rows = tl.tensor(list(range(n)), dtype=tl.int64) # Find r rows iteratively i = 0 A_new = A while i < r: mask = list(range(tl.shape(A_new)[0])) # Compute the square of norm of each row rows_norms = tl.sum(A_new**2, axis=1) # If there is only one row of A left, let's just return it. if tl.shape(rows_norms) == (): row_idx[i] = rest_of_rows break # If a row is 0, we delete it. if any(rows_norms == 0): zero_idx = tl.argmin(rows_norms, axis=0) mask.pop(zero_idx) rest_of_rows = rest_of_rows[mask] A_new = A_new[mask, :] continue # Find the row of max norm max_row_idx = tl.argmax(rows_norms, axis=0) max_row = A[rest_of_rows[max_row_idx], :] # Compute the projection of max_row to other rows # projection a to b is computed as: <a,b> / sqrt(|a|*|b|) projection = tl.dot(A_new, tl.transpose(max_row)) normalization = tl.sqrt(rows_norms[max_row_idx] * rows_norms) # make sure normalization vector is of the same shape of projection normalization = tl.reshape(normalization, tl.shape(projection)) projection = projection / normalization # Subtract the projection from A_new: b <- b - a * projection A_new = A_new - A_new * tl.reshape(projection, (tl.shape(A_new)[0], 1)) # Delete the selected row mask.pop(tl.to_numpy(max_row_idx)) A_new = A_new[mask, :] # update the row_idx and rest_of_rows row_idx = tl.index_update(row_idx, i, rest_of_rows[max_row_idx]) rest_of_rows = rest_of_rows[tl.tensor(mask, dtype=tl.int64)] i = i + 1 row_idx = tl.tensor(row_idx, dtype=tl.int64) inverse = tl.solve( A[row_idx, :], tl.eye(tl.shape(A[row_idx, :])[0], **tl.context(A)) ) row_idx = tl.to_numpy(row_idx) return row_idx, inverse