Source code for tensorly.tenalg.proximal

import tensorly as tl
import numpy as np

# Author: Jean Kossaifi
#         Jeremy Cohen <jeremy.cohen@irisa.fr>
#         Axel Marmoret <axel.marmoret@inria.fr>
#         Caglayan Tuna <caglayantun@gmail.com>

# License: BSD 3 clause


def validate_constraints(
    non_negative=None,
    l1_reg=None,
    l2_reg=None,
    l2_square_reg=None,
    unimodality=None,
    normalize=None,
    simplex=None,
    normalized_sparsity=None,
    soft_sparsity=None,
    smoothness=None,
    monotonicity=None,
    hard_sparsity=None,
    n_const=1,
    order=0,
):
    """
    Validates input constraints for constrained parafac decomposition and returns a constraint and a parameter for
    proximal operator.

    Parameters
    ----------
    non_negative : bool or dictionary
        This constraint is clipping negative values to '0'.
        If it is True, non-negative constraint is applied to all modes.
    l1_reg : float or list or dictionary, optional
        Penalizes the factor with the l1 norm using the input value as regularization parameter.
    l2_reg : float or list or dictionary, optional
        Penalizes the factor with the l2 norm using the input value as regularization parameter.
    l2_square_reg : float or list or dictionary, optional
        Penalizes the factor with the l2 square norm using the input value as regularization parameter.
    unimodality : bool or dictionary, optional
        If it is True, unimodality constraint is applied to all modes.
        Applied to each column seperately.
    normalize : bool or dictionary, optional
        This constraint divides all the values by maximum value of the input array.
        If it is True, normalize constraint is applied to all modes.
    simplex : float or list or dictionary, optional
        Projects on the simplex with the given parameter
        Applied to each column seperately.
    normalized_sparsity : float or list or dictionary, optional
        Normalizes with the norm after hard thresholding
    soft_sparsity : float or list or dictionary, optional
        Impose that the columns of factors have L1 norm bounded by a user-defined threshold.
    smoothness : float or list or dictionary, optional
        Optimizes the factors by solving a banded system
    monotonicity : bool or dictionary, optional
        Projects columns to monotonically decreasing distrbution
        Applied to each column seperately.
        If it is True, monotonicity constraint is applied to all modes.
    hard_sparsity : float or list or dictionary, optional
        Hard thresholding with the given threshold
    n_const : int
        Number of constraints. If it is None, function returns input tensor.
        Default : 1
    order : int
        Specifies which constraint to implement if several constraints are selected as input
        Default : 0
    Returns
    -------
    constraint : string
    parameter : float
    """
    constraints = [None] * n_const
    parameters = [None] * n_const
    if non_negative:
        if isinstance(non_negative, dict):
            modes = list(non_negative)
            for i in range(len(modes)):
                constraints[modes[i]] = "non_negative"
        else:
            for i in range(len(constraints)):
                constraints[i] = "non_negative"
    if l1_reg:
        if isinstance(l1_reg, dict):
            modes = list(l1_reg)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "l1_reg"
                parameters[modes[i]] = l1_reg[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "l1_reg"
                if isinstance(l1_reg, list):
                    parameters[i] = l1_reg[i]
                else:
                    parameters[i] = l1_reg
    if l2_reg:
        if isinstance(l2_reg, dict):
            modes = list(l2_reg)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "l2_reg"
                parameters[modes[i]] = l2_reg[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "l2_reg"
                if isinstance(l2_reg, list):
                    parameters[i] = l2_reg[i]
                else:
                    parameters[i] = l2_reg
    if l2_square_reg:
        if isinstance(l2_square_reg, dict):
            modes = list(l2_square_reg)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "l2_square_reg"
                parameters[modes[i]] = l2_square_reg[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "l2_square_reg"
                if isinstance(l2_square_reg, list):
                    parameters[i] = l2_square_reg[i]
                else:
                    parameters[i] = l2_square_reg
    if normalized_sparsity:
        if isinstance(normalized_sparsity, dict):
            modes = list(normalized_sparsity)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "normalized_sparsity"
                parameters[modes[i]] = normalized_sparsity[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "normalized_sparsity"
                if isinstance(normalized_sparsity, list):
                    parameters[i] = normalized_sparsity[i]
                else:
                    parameters[i] = normalized_sparsity
    if soft_sparsity:
        if isinstance(soft_sparsity, dict):
            modes = list(soft_sparsity)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "soft_sparsity"
                parameters[modes[i]] = soft_sparsity[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "soft_sparsity"
                if isinstance(soft_sparsity, list):
                    parameters[i] = soft_sparsity[i]
                else:
                    parameters[i] = soft_sparsity
    if hard_sparsity:
        if isinstance(hard_sparsity, dict):
            modes = list(hard_sparsity)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "hard_sparsity"
                parameters[modes[i]] = hard_sparsity[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "hard_sparsity"
                if isinstance(hard_sparsity, list):
                    parameters[i] = hard_sparsity[i]
                else:
                    parameters[i] = hard_sparsity
    if simplex:
        if isinstance(simplex, dict):
            modes = list(simplex)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "simplex"
                parameters[modes[i]] = simplex[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "simplex"
                if isinstance(simplex, list):
                    parameters[i] = simplex[i]
                else:
                    parameters[i] = simplex
    if smoothness:
        if isinstance(smoothness, dict):
            modes = list(smoothness)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "smoothness"
                parameters[modes[i]] = smoothness[modes[i]]
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "smoothness"
                if isinstance(smoothness, list):
                    parameters[i] = smoothness[i]
                else:
                    parameters[i] = smoothness
    if unimodality:
        if isinstance(unimodality, dict):
            modes = list(unimodality)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "unimodality"
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "unimodality"
    if monotonicity:
        if isinstance(monotonicity, dict):
            modes = list(monotonicity)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "monotonicity"
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "monotonicity"
    if normalize:
        if isinstance(normalize, dict):
            modes = list(normalize)
            for i in range(len(modes)):
                if constraints[modes[i]] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[modes[i]] = "normalize"
        else:
            for i in range(len(constraints)):
                if constraints[i] is not None:
                    raise ValueError(
                        "You selected two constraints for the same mode. Consider to check your input"
                    )
                constraints[i] = "normalize"
    return constraints[order], parameters[order]


def proximal_operator(
    tensor,
    non_negative=None,
    l1_reg=None,
    l2_reg=None,
    l2_square_reg=None,
    unimodality=None,
    normalize=None,
    simplex=None,
    normalized_sparsity=None,
    soft_sparsity=None,
    smoothness=None,
    monotonicity=None,
    hard_sparsity=None,
    n_const=1,
    order=0,
):
    """
    Proximal operator solves a convex optimization problem. Let f be a
    convex proper lower-semicontinuous function, the proximal operator of f is :math:`\\argmin_x(f(x) + 1/2||x - v||_2^2)`.
    This operator can be used to solve constrained optimization problems as a generalization to projections on convex sets.
    Therefore, proximal gradients are used for constrained tensor decomposition problems in the literature.

    Parameters
    ----------
    tensor : ndarray
    non_negative : bool or dictionary
        This constraint is clipping negative values to '0'.
        If it is True, non-negative constraint is applied to all modes.
    l1_reg : float or list or dictionary, optional
        Penalizes the factor with the given regularizer
    l2_reg : float or list or dictionary, optional
        Penalizes the factor with the given regularizer
    l2_square_reg : float or list or dictionary, optional
        Penalizes the factor with the given regularizer
    unimodality : bool or dictionary, optional
        If it is True, unimodality constraint is applied to all modes.
        Applied to each column seperately.
    normalize : bool or dictionary, optional
        This constraint divides all the values by maximum value of the input array.
        If it is True, normalize constraint is applied to all modes.
    simplex : float or list or dictionary, optional
        Projects on the simplex with the given parameter
        Applied to each column seperately.
    normalized_sparsity : float or list or dictionary, optional
        Normalizes with the norm after hard thresholding
    soft_sparsity : float or list or dictionary, optional
        Simplex operator using soft thresholding
    smoothness : float or list or dictionary, optional
        Optimizes the factors by solving a banded system
    monotonicity : bool or dictionary, optional
        Projects columns to monotonically decreasing distrbution
        Applied to each column seperately.
        If it is True, monotonicity constraint is applied to all modes.
    hard_sparsity : float or list or dictionary, optional
        Hard thresholding with the given threshold
    n_const : int
        Number of constraints. If it is None, function returns input tensor.
        Default : 1
    order : int
        Specifies which constraint to implement if several constraints are selected as input
        Default : 0
    Returns
    -------
    tensor : updated tensor according to the selected constraint, which is the solution of the optimization problem above.
             If constraint is None, function returns the same tensor.

    References
    ----------
    .. [1]: Moreau, J. J. (1962). Fonctions convexes duales et points proximaux dans un espace hilbertien.
            Comptes rendus hebdomadaires des séances de l'Académie des sciences, 255, 2897-2899.
    .. [2]: Parikh, N., & Boyd, S. (2014). Proximal algorithms.
            Foundations and Trends in optimization, 1(3), 127-239.
    """
    if n_const is None:
        return tensor
    constraint, parameter = validate_constraints(
        non_negative=non_negative,
        l1_reg=l1_reg,
        l2_reg=l2_reg,
        l2_square_reg=l2_square_reg,
        unimodality=unimodality,
        normalize=normalize,
        simplex=simplex,
        normalized_sparsity=normalized_sparsity,
        soft_sparsity=soft_sparsity,
        smoothness=smoothness,
        monotonicity=monotonicity,
        hard_sparsity=hard_sparsity,
        n_const=n_const,
        order=order,
    )
    if constraint is None:
        return tensor
    elif constraint == "non_negative":
        return tl.clip(tensor, 0, tl.max(tensor))
    elif constraint == "l1_reg":
        return soft_thresholding(tensor, parameter)
    elif constraint == "l2_reg":
        return l2_prox(tensor, parameter)
    elif constraint == "l2_square_reg":
        return l2_square_prox(tensor, parameter)
    elif constraint == "unimodality":
        return unimodality_prox(tensor)
    elif constraint == "normalize":
        return tensor / tl.max(tl.abs(tensor))
    elif constraint == "simplex":
        return simplex_prox(tensor, parameter)
    elif constraint == "normalized_sparsity":
        return normalized_sparsity_prox(tensor, parameter)
    elif constraint == "soft_sparsity":
        return soft_sparsity_prox(tensor, parameter)
    elif constraint == "smoothness":
        return smoothness_prox(tensor, parameter)
    elif constraint == "monotonicity":
        return monotonicity_prox(tensor)
    elif constraint == "hard_sparsity":
        return hard_thresholding(tensor, parameter)


def smoothness_prox(tensor, regularizer):
    """Proximal operator for smoothness

    Parameters
    ----------
    tensor : ndarray
    regularizer : float

    Returns
    -------
    ndarray

    """
    diag_matrix = (
        tl.diag(
            2 * regularizer * tl.ones(tl.shape(tensor)[0], **tl.context(tensor)) + 1
        )
        + tl.diag(
            -regularizer * tl.ones(tl.shape(tensor)[0] - 1, **tl.context(tensor)), k=-1
        )
        + tl.diag(
            -regularizer * tl.ones(tl.shape(tensor)[0] - 1, **tl.context(tensor)), k=1
        )
    )
    return tl.solve(diag_matrix, tensor)


def monotonicity_prox(tensor, decreasing=False):
    """
    This function projects each column of the input array on the set of arrays so that
          x[1] <= x[2] <= ... <= x[n] (decreasing=False)
                        or
          x[1] >= x[2] >= ... >= x[n] (decreasing=True)
    is satisfied columnwise.

    Parameters
    ----------
    tensor : ndarray
    decreasing : If it is True, function returns columnwise
                 monotone decreasing tensor. Otherwise, returned array
                 will be monotone increasing.
                 Default: True

    Returns
    -------
    ndarray
          A tensor of which columns' are monotonic.

    References
    ----------
    .. [1]: G. Chierchia, E. Chouzenoux, P. L. Combettes, and J.-C. Pesquet
            "The Proximity Operator Repository. User's guide"
    """
    if tl.ndim(tensor) == 1:
        tensor = tl.reshape(tensor, [tl.shape(tensor)[0], 1])
    elif tl.ndim(tensor) > 2:
        raise ValueError(
            "Monotonicity prox doesn't support an input which has more than 2 dimensions."
        )
    tensor_mon = tl.copy(tensor)
    if decreasing:
        tensor_mon = tl.flip(tensor_mon, axis=0)
    row, column = tl.shape(tensor_mon)
    cum_sum = tl.cumsum(tensor_mon, axis=0)
    for j in range(column):
        assisted_tensor = tl.zeros([row, row], **tl.context(tensor))
        for i in range(row):
            if i == 0:
                assisted_tensor = tl.index_update(
                    assisted_tensor,
                    tl.index[i, i:],
                    cum_sum[i:, j]
                    / tl.tensor(tl.arange(row - i) + 1, **tl.context(tensor)),
                )
            else:
                assisted_tensor = tl.index_update(
                    assisted_tensor,
                    tl.index[i, i:],
                    (cum_sum[i:, j] - cum_sum[i - 1, j])
                    / tl.tensor(tl.arange(row - i) + 1, **tl.context(tensor)),
                )
        tensor_mon = tl.index_update(
            tensor_mon, tl.index[:, j], tl.max(assisted_tensor, axis=0)
        )
        for i in reversed(range(row - 1)):
            if tensor_mon[i, j] > tensor_mon[i + 1, j]:
                tensor_mon = tl.index_update(
                    tensor_mon, tl.index[i, j], tensor_mon[i + 1, j]
                )
    if decreasing:
        tensor_mon = tl.flip(tensor_mon, axis=0)
    return tensor_mon


def unimodality_prox(tensor):
    """
    This function projects each column of the input array on the set of arrays so that
          x[1] <= x[2] <= x[j] >= x[j+1]... >= x[n]
    is satisfied columnwise.

    Parameters
    ----------
    tensor : ndarray

    Returns
    -------
    ndarray
         A tensor of which columns' distribution are unimodal.

    References
    ----------
    .. [1]: Bro, R., & Sidiropoulos, N. D. (1998). Least squares algorithms under
            unimodality and non‐negativity constraints. Journal of Chemometrics:
            A Journal of the Chemometrics Society, 12(4), 223-247.
    """
    if tl.ndim(tensor) == 1:
        tensor = tl.vec_to_tensor(tensor, [tl.shape(tensor)[0], 1])
    elif tl.ndim(tensor) > 2:
        raise ValueError(
            "Unimodality prox doesn't support an input which has more than 2 dimensions."
        )

    tensor_unimodal = tl.copy(tensor)
    monotone_increasing = tl.tensor(monotonicity_prox(tensor), **tl.context(tensor))
    monotone_decreasing = tl.tensor(
        monotonicity_prox(tensor, decreasing=True), **tl.context(tensor)
    )
    # Next line finds mutual peak points
    values = tl.tensor(
        tl.to_numpy((tensor - monotone_decreasing >= 0))
        * tl.to_numpy((tensor - monotone_increasing >= 0)),
        **tl.context(tensor),
    )

    sum_inc = tl.where(
        values == 1,
        tl.cumsum(tl.abs(tensor - monotone_increasing), axis=0),
        tl.tensor(0, **tl.context(tensor)),
    )
    sum_inc = tl.where(
        values == 1,
        sum_inc - tl.abs(tensor - monotone_increasing),
        tl.tensor(0, **tl.context(tensor)),
    )
    sum_dec = tl.where(
        tl.flip(values, axis=0) == 1,
        tl.cumsum(
            tl.abs(tl.flip(tensor, axis=0) - tl.flip(monotone_decreasing, axis=0)),
            axis=0,
        ),
        tl.tensor(0, **tl.context(tensor)),
    )
    sum_dec = tl.where(
        tl.flip(values, axis=0) == 1,
        sum_dec
        - tl.abs(tl.flip(tensor, axis=0) - tl.flip(monotone_decreasing, axis=0)),
        tl.tensor(0, **tl.context(tensor)),
    )

    difference = tl.where(
        values == 1,
        sum_inc + tl.flip(sum_dec, axis=0),
        tl.max(sum_inc + tl.flip(sum_dec, axis=0)),
    )
    min_indice = tl.argmin(tl.tensor(difference), axis=0)

    for i in range(len(min_indice)):
        tensor_unimodal = tl.index_update(
            tensor_unimodal,
            tl.index[: int(min_indice[i]), i],
            monotone_increasing[: int(min_indice[i]), i],
        )
        tensor_unimodal = tl.index_update(
            tensor_unimodal,
            tl.index[int(min_indice[i] + 1) :, i],
            monotone_decreasing[int(min_indice[i] + 1) :, i],
        )
    return tensor_unimodal


def l2_square_prox(tensor, regularizer):
    """
    Proximal operator of (regularizer * ||.||_2^2) (squared l2 norm).

    Parameters
    ----------
    tensor : ndarray
    regularizer : float

    Returns
    -------
    ndarray

    References
    ----------
    .. [1]: Combettes, P. L., & Pesquet, J. C. (2011). Proximal splitting methods in signal processing.
            In Fixed-point algorithms for inverse problems in science and engineering (pp. 185-212).
            Springer, New York, NY.
    """
    return tensor / (1 + 2 * regularizer)


def l2_prox(tensor, regularizer):
    """
    Proximal operator of (regularizer*|| ||_2) (l2 norm).

    This proximal operator is sometimes called block soft thresholding.

    Parameters
    ----------
    tensor : ndarray
    regularizer : float

    Returns
    -------
    ndarray

    Notes
    -----
    .. math::
        \\begin{equation}
            prox_{\\gamma} ||x||_2 = (1 - \\gamma / \\max(|x||_2, \\gamma ))\\times x
        \\end{equation}
    """
    norm = tl.norm(tensor)
    if norm > regularizer:
        bigger_value = norm
    else:
        bigger_value = regularizer
    return tensor - (tensor * regularizer / bigger_value)


def normalized_sparsity_prox(tensor, threshold):
    """
    Normalized sparsity operator by using hard thresholding.
    The input is projected on the intersection of the unit l2 ball with the set of threshold-sparse vectors
    \\{||x||_2^2=1 and ||x||_0\\leq threshold \\}

    Parameters
    ----------
    tensor : ndarray
    threshold : int
                target sparsity level

    Returns
    -------
    ndarray

    References
    ----------
    .. [1]: Le Magoarou, L., & Gribonval, R. (2016). Flexible multilayer
            sparse approximations of matrices and applications.
            IEEE Journal of Selected Topics in Signal Processing, 10(4), 688-700.

    Notes
    -----
    .. math::
        \\begin{equation}
            prox_\\threshold (||tensor||_0) / ||prox_(\\threshold ||tensor||_0)||_2
        \\end{equation}
    """
    tensor_hard = hard_thresholding(tensor, threshold)
    return tensor_hard / tl.norm(tensor_hard)


def soft_sparsity_prox(tensor, threshold):
    """
    Projects the input tensor on the set of tensors with l1 norm smaller than threshold, using Soft Thresholding.

    Parameters
    ----------
    tensor : ndarray
    threshold :

    Returns
    -------
    ndarray

    References
    ----------
    .. [1]: Schenker, C., Cohen, J. E., & Acar, E. (2020). A Flexible Optimization Framework for
            Regularized Matrix-Tensor Factorizations with Linear Couplings.
            IEEE Journal of Selected Topics in Signal Processing.

    Notes
    -----
    .. math::
        \\begin{equation}
           \\lambda: prox_\\lambda (||tensor||_1) \\leq parameter
        \\end{equation}
    """
    return simplex_prox(tl.abs(tensor), threshold) * tl.sign(tensor)


def simplex_prox(tensor, parameter):
    """
    Projects the input tensor on the simplex of radius parameter.

    Parameters
    ----------
    tensor : ndarray
    parameter : float

    Returns
    -------
    ndarray

    References
    ----------
    .. [1]: Held, Michael, Philip Wolfe, and Harlan P. Crowder.
            "Validation of subgradient optimization."
            Mathematical programming 6.1 (1974): 62-88.
    """
    # Making it work for 1-dimensional tensors as well
    if tl.ndim(tensor) > 1:
        row, col = tl.shape(tensor)
    else:
        row = tl.shape(tensor)[0]
        col = 1
        tensor = tl.reshape(tensor, [row, col])
    tensor_sort = tl.flip(tl.sort(tensor, axis=0), axis=0)
    # Broadcasting is used to divide rows by 1,2,3...
    cumsum_min_param_by_k = (tl.cumsum(tensor_sort, axis=0) - parameter) / tl.cumsum(
        tl.ones([row, 1], **tl.context(tensor)), axis=0
    )
    # Added -1 to correspond to a Python index
    to_change = tl.sum(tl.where(tensor_sort > cumsum_min_param_by_k, 1, 0), axis=0) - 1
    difference = tl.zeros(col, **tl.context(tensor))
    for i in range(col):
        difference = tl.index_update(
            difference, tl.index[i], cumsum_min_param_by_k[to_change[i], i]
        )
    if col > 1:
        return tl.clip(tensor - difference, a_min=0)
    else:
        return tl.tensor_to_vec(tl.clip(tensor - difference, a_min=0))


def hard_thresholding(tensor, number_of_non_zero):
    """
    Proximal operator of the l0 ``norm''
    Keeps greater "number_of_non_zero" elements untouched and sets other elements to zero.

    Parameters
    ----------
    tensor : ndarray
    number_of_non_zero : int

    Returns
    -------
    ndarray
          Thresholded tensor on which the operator has been applied
    """
    tensor_vec = tl.copy(tl.tensor_to_vec(tensor))
    sorted_indices = tl.argsort(
        tl.flip(tl.argsort(tl.abs(tensor_vec), axis=0), axis=0), axis=0
    )
    return tl.reshape(
        tl.where(
            sorted_indices < number_of_non_zero,
            tensor_vec,
            tl.tensor(0, **tl.context(tensor_vec)),
        ),
        tensor.shape,
    )


[docs] def soft_thresholding(tensor, threshold): """Soft-thresholding operator sign(tensor) * max[abs(tensor) - threshold, 0] Parameters ---------- tensor : ndarray threshold : float or ndarray with shape tensor.shape * If float the threshold is applied to the whole tensor * If ndarray, one threshold is applied per elements, 0 values are ignored Returns ------- ndarray thresholded tensor on which the operator has been applied Examples -------- Basic shrinkage >>> import tensorly.backend as T >>> from tensorly.tenalg.proximal import soft_thresholding >>> tensor = tl.tensor([[1, -2, 1.5], [-4, 3, -0.5]]) >>> soft_thresholding(tensor, 1.1) array([[ 0. , -0.9, 0.4], [-2.9, 1.9, 0. ]]) Example with missing values >>> mask = tl.tensor([[0, 0, 1], [1, 0, 1]]) >>> soft_thresholding(tensor, mask*1.1) array([[ 1. , -2. , 0.4], [-2.9, 3. , 0. ]]) See also -------- svd_thresholding : SVD-thresholding operator """ return tl.sign(tensor) * tl.clip(tl.abs(tensor) - threshold, a_min=0)
[docs] def svd_thresholding(matrix, threshold): """Singular value thresholding operator Parameters ---------- matrix : ndarray threshold : float Returns ------- ndarray matrix on which the operator has been applied See also -------- procrustes : procrustes operator """ U, s, V = tl.truncated_svd(matrix, n_eigenvecs=min(matrix.shape)) return tl.dot(U, tl.reshape(soft_thresholding(s, threshold), (-1, 1)) * V)
[docs] def procrustes(matrix): """Procrustes operator Parameters ---------- matrix : ndarray Returns ------- ndarray matrix on which the Procrustes operator has been applied has the same shape as the original tensor See also -------- svd_thresholding : SVD-thresholding operator """ U, _, V = tl.truncated_svd(matrix, n_eigenvecs=min(matrix.shape)) return tl.dot(U, V)
def hals_nnls( UtM, UtU, V=None, n_iter_max=500, tol=10e-8, sparsity_coefficient=None, normalize=False, nonzero_rows=False, exact=False, ): """ Non Negative Least Squares (NNLS) Computes an approximate solution of a nonnegative least squares problem (NNLS) with an exact block-coordinate descent scheme. M is m by n, U is m by r, V is r by n. All matrices are nonnegative componentwise. This algorithm is defined in [1], as an accelerated version of the HALS algorithm. It features two accelerations: an early stop stopping criterion, and a complexity averaging between precomputations and loops, so as to use large precomputations several times. This function is made for being used repetively inside an outer-loop alternating algorithm, for instance for computing nonnegative matrix Factorization or tensor factorization. Parameters ---------- UtM: r-by-n array Pre-computed product of the transposed of U and M, used in the update rule UtU: r-by-r array Pre-computed product of the transposed of U and U, used in the update rule V: r-by-n initialization matrix (mutable) Initialized V array By default, is initialized with one non-zero entry per column corresponding to the closest column of U of the corresponding column of M. n_iter_max: Postivie integer Upper bound on the number of iterations Default: 500 tol : float in [0,1] early stop criterion, while err_k > delta*err_0. Set small for almost exact nnls solution, or larger (e.g. 1e-2) for inner loops of a PARAFAC computation. Default: 10e-8 sparsity_coefficient: float or None The coefficient controling the sparisty level in the objective function. If set to None, the problem is solved unconstrained. Default: None nonzero_rows: boolean True if the lines of the V matrix can't be zero, False if they can be zero Default: False exact: If it is True, the algorithm gives a results with high precision but it needs high computational cost. If it is False, the algorithm gives an approximate solution Default: False Returns ------- V: array a r-by-n nonnegative matrix \approx argmin_{V >= 0} ||M-UV||_F^2 rec_error: float number of loops authorized by the error stop criterion iteration: integer final number of update iteration performed complexity_ratio: float number of loops authorized by the stop criterion Notes ----- We solve the following problem :math:`\\min_{V >= 0} ||M-UV||_F^2` The matrix V is updated linewise. The update rule for this resolution is:: .. math:: \\begin{equation} V[k,:]_(j+1) = V[k,:]_(j) + (UtM[k,:] - UtU[k,:]\\times V_(j))/UtU[k,k] \\end{equation} with j the update iteration. This problem can also be defined by adding a sparsity coefficient, enhancing sparsity in the solution [2]. In this sparse version, the update rule becomes:: .. math:: \\begin{equation} V[k,:]_(j+1) = V[k,:]_(j) + (UtM[k,:] - UtU[k,:]\\times V_(j) - sparsity_coefficient)/UtU[k,k] \\end{equation} References ---------- .. [1]: N. Gillis and F. Glineur, Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for Nonnegative Matrix Factorization, Neural Computation 24 (4): 1085-1105, 2012. .. [2] J. Eggert, and E. Korner. "Sparse coding and NMF." 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541). Vol. 4. IEEE, 2004. """ rank, n_col_M = tl.shape(UtM) if V is None: # checks if V is empty V = tl.solve(UtU, UtM) V = tl.clip(V, a_min=0, a_max=None) # Scaling scale = tl.sum(UtM * V) / tl.sum(UtU * tl.dot(V, tl.transpose(V))) V = V * scale if exact: n_iter_max = 50000 tol = 10e-16 for iteration in range(n_iter_max): rec_error = 0 for k in range(rank): if UtU[k, k]: term = UtM[k, :] - tl.dot(UtU[k, :], V) # Modifying the function for sparsification if sparsity_coefficient is not None: term -= sparsity_coefficient deltaV = tl.maximum(term / UtU[k, k], -V[k, :]) V = tl.index_update(V, tl.index[k, :], V[k, :] + deltaV) rec_error += tl.dot(deltaV, tl.transpose(deltaV)) # Safety procedure, if columns aren't allow to be zero if nonzero_rows and tl.all(V[k, :] == 0): V[k, :] = tl.eps(V.dtype) * tl.max(V) elif nonzero_rows: raise ValueError(f"Column {k} of U is zero with nonzero condition") if normalize: norm = tl.norm(V[k, :]) if norm != 0: V[k, :] /= norm else: sqrt_n = 1 / n_col_M ** (1 / 2) V[k, :] = [sqrt_n for i in range(n_col_M)] if iteration == 0: rec_error0 = rec_error numerator = tl.shape(V)[0] * tl.shape(V)[1] + tl.shape(V)[1] * rank denominator = tl.shape(V)[0] * rank + tl.shape(V)[0] complexity_ratio = 1 + (numerator / denominator) if exact: if rec_error < tol * rec_error0: break else: if rec_error < tol * rec_error0 or iteration > 1 + 0.5 * complexity_ratio: break return V, rec_error, iteration, complexity_ratio def fista( UtM, UtU, x=None, n_iter_max=100, non_negative=True, sparsity_coef=0, lr=None, tol=10e-8, ): """ Fast Iterative Shrinkage Thresholding Algorithm (FISTA) Computes an approximate (nonnegative) solution for Ux=M linear system. Parameters ---------- UtM : ndarray Pre-computed product of the transposed of U and M UtU : ndarray Pre-computed product of the transposed of U and U x : init Default: None n_iter_max : int Maximum number of iteration Default: 100 non_negative : bool, default is False if True, result will be non-negative lr : float learning rate Default : None sparsity_coef : float or None tol : float stopping criterion Returns ------- x : approximate solution such that Ux = M Notes ----- We solve the following problem :math: `1/2 ||m - Ux ||_2^2 + \\lambda |x|_1` Reference ---------- [1] : Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183-202. """ if sparsity_coef is None: sparsity_coef = 0 if x is None: x = tl.zeros(tl.shape(UtM), **tl.context(UtM)) if lr is None: lr = 1 / (tl.truncated_svd(UtU)[1][0]) # Parameters momentum_old = tl.tensor(1.0) norm_0 = 0.0 x_update = tl.copy(x) for iteration in range(n_iter_max): if isinstance(UtU, list): x_gradient = ( -UtM + tl.tenalg.multi_mode_dot(x_update, UtU, transpose=False) + sparsity_coef ) else: x_gradient = -UtM + tl.dot(UtU, x_update) + sparsity_coef if non_negative is True: x_gradient = tl.where(lr * x_gradient < x_update, x_gradient, x_update / lr) x_new = x_update - lr * x_gradient momentum = (1 + tl.sqrt(1 + 4 * momentum_old**2)) / 2 x_update = x_new + ((momentum_old - 1) / momentum) * (x_new - x) momentum_old = momentum x = tl.copy(x_new) norm = tl.norm(lr * x_gradient) if iteration == 1: norm_0 = norm if norm < tol * norm_0: break return x def active_set_nnls(Utm, UtU, x=None, n_iter_max=100, tol=10e-8): """ Active set algorithm for non-negative least square solution. Computes an approximate non-negative solution for Ux=m linear system. Parameters ---------- Utm : vectorized ndarray Pre-computed product of the transposed of U and m UtU : ndarray Pre-computed Kronecker product of the transposed of U and U x : init Default: None n_iter_max : int Maximum number of iteration Default: 100 tol : float Early stopping criterion Returns ------- x : ndarray Notes ----- This function solves following problem: .. math:: \\begin{equation} \\min_{x} ||Ux - m||^2 \\end{equation} According to [1], non-negativity-constrained least square estimation problem becomes: .. math:: \\begin{equation} x' = (Utm) - (UTU)\\times x \\end{equation} Reference ---------- [1] : Bro, R., & De Jong, S. (1997). A fast non‐negativity‐constrained least squares algorithm. Journal of Chemometrics: A Journal of the Chemometrics Society, 11(5), 393-401. """ if tl.get_backend() == "tensorflow": raise ValueError( "Active set is not supported with the tensorflow backend. Consider using fista method with tensorflow." ) if x is None: x_vec = tl.zeros(tl.shape(UtU)[1], **tl.context(UtU)) else: x_vec = tl.base.tensor_to_vec(x) x_gradient = Utm - tl.dot(UtU, x_vec) active_set = x_vec <= 0 support_vec = tl.zeros(tl.shape(x_vec), **tl.context(x_vec)) for iteration in range(n_iter_max): if iteration > 0 or tl.all(x_vec == 0): indice = tl.argmax(x_gradient) active_set = tl.index_update(active_set, tl.index[indice], False) # To avoid singularity error when initial x exists try: passive_solution = tl.solve( UtU[~active_set, :][:, ~active_set], Utm[~active_set] ) # Start from zeros if solve is not achieved except: x_vec = tl.zeros(tl.shape(UtU)[1], **tl.context(UtU)) support_vec = tl.zeros(tl.shape(x_vec), **tl.context(x_vec)) active_set = x_vec <= 0 if tl.any(active_set): indice = tl.argmax(x_gradient) active_set = tl.index_update(active_set, tl.index[indice], False) passive_solution = tl.solve( UtU[~active_set, :][:, ~active_set], Utm[~active_set] ) # Update support vector with passive solution support_vec = tl.zeros(tl.shape(support_vec), **tl.context(support_vec)) support_vec = tl.index_update(support_vec, ~active_set, passive_solution) # update support vector if it is necessary if tl.min(support_vec[~active_set]) <= 0: for _ in range(len(active_set)): alpha = tl.min( x_vec[~active_set][support_vec[~active_set] <= 0] / ( x_vec[~active_set][support_vec[~active_set] <= 0] - support_vec[~active_set][support_vec[~active_set] <= 0] ) ) update = alpha * (support_vec - x_vec) x_vec = x_vec + update active_set = x_vec <= 0 passive_solution = tl.solve( UtU[~active_set, :][:, ~active_set], Utm[~active_set] ) # Update support vector with passive solution support_vec = tl.zeros(tl.shape(support_vec), **tl.context(support_vec)) support_vec = tl.index_update( support_vec, ~active_set, passive_solution ) # Break if finished updating if tl.all(active_set) != True or tl.min(support_vec[~active_set]) > 0: break # set x to s x_vec = tl.clip(support_vec, 0, tl.max(support_vec)) # gradient update x_gradient = Utm - tl.dot(UtU, x_vec) if tl.any(active_set) != True or tl.max(x_gradient[active_set]) <= tol: break return x_vec def admm( UtM, UtU, x, dual_var, n_iter_max=100, n_const=None, order=None, non_negative=None, l1_reg=None, l2_reg=None, l2_square_reg=None, unimodality=None, normalize=None, simplex=None, normalized_sparsity=None, soft_sparsity=None, smoothness=None, monotonicity=None, hard_sparsity=None, tol=1e-4, ): """ Alternating direction method of multipliers (ADMM) algorithm to minimize a quadratic function under convex constraints. Parameters ---------- UtM: ndarray Pre-computed product of the transposed of U and M. UtU: ndarray Pre-computed product of the transposed of U and U. x: init Default: None dual_var : ndarray Dual variable to update x n_iter_max : int Maximum number of iteration Default: 100 n_const : int Number of constraints. If it is None, function solves least square problem without proximity operator If ADMM function is used with a constraint apart from constrained parafac decomposition, n_const value should be changed to '1'. Default : None order : int Specifies which constraint to implement if several constraints are selected as input Default : None non_negative : bool or dictionary This constraint is clipping negative values to '0'. If it is True, non-negative constraint is applied to all modes. l1_reg : float or list or dictionary, optional Penalizes the factor with the l1 norm using the input value as regularization parameter. l2_reg : float or list or dictionary, optional Penalizes the factor with the l2 norm using the input value as regularization parameter. l2_square_reg : float or list or dictionary, optional Penalizes the factor with the l2 square norm using the input value as regularization parameter. unimodality : bool or dictionary, optional If it is True, unimodality constraint is applied to all modes. Applied to each column seperately. normalize : bool or dictionary, optional This constraint divides all the values by maximum value of the input array. If it is True, normalize constraint is applied to all modes. simplex : float or list or dictionary, optional Projects on the simplex with the given parameter Applied to each column seperately. normalized_sparsity : float or list or dictionary, optional Normalizes with the norm after hard thresholding soft_sparsity : float or list or dictionary, optional Impose that the columns of factors have L1 norm bounded by a user-defined threshold. smoothness : float or list or dictionary, optional Optimizes the factors by solving a banded system monotonicity : bool or dictionary, optional Projects columns to monotonically decreasing distrbution Applied to each column seperately. If it is True, monotonicity constraint is applied to all modes. hard_sparsity : float or list or dictionary, optional Hard thresholding with the given threshold tol : float Returns ------- x : Updated ndarray x_split : Updated ndarray dual_var : Updated ndarray Notes ----- ADMM solves the convex optimization problem :math:`\\min_ f(x) + g(z)` where :math: A(x_split) + Bx = c. Following updates are iterated to solve the problem:: .. math:: \\begin{equation} x_split = argmin_(x_split) f(x_split) + (rho/2)||A(x_split) + Bx - c||_2^2 x = argmin_x g(x) + (rho/2)||A(x_split) + Bx - c||_2^2 dual_var = dual_var + (Ax + B(x_split) - c) \\end{equation} where rho is a constant defined by the user. Let us define a least square problem such as :math:`\\||Ux - M||^2 + r(x)`. ADMM can be adapted to this least square problem as following:: .. math:: \\begin{equation} x_split = (UtU + rho\times I)\times(UtM + rho\times(x + dual_var)^T) x = argmin r(x) + (rho/2)||x - x_split^T + dual_var||_2^2 dual_var = dual_var + x - x_split^T \\end{equation} where r is the regularization operator. Here, x can be updated by using proximity operator of :math:`x_split^T - dual_var`. References ---------- .. [1] Huang, Kejun, Nicholas D. Sidiropoulos, and Athanasios P. Liavas. "A flexible and efficient algorithmic framework for constrained matrix and tensor factorization." IEEE Transactions on Signal Processing 64.19 (2016): 5052-5065. """ rho = tl.trace(UtU) / tl.shape(x)[1] for iteration in range(n_iter_max): x_old = tl.copy(x) x_split = tl.solve( tl.transpose(UtU + rho * tl.eye(tl.shape(UtU)[1])), tl.transpose(UtM + rho * (x + dual_var)), ) x = proximal_operator( tl.transpose(x_split) - dual_var, non_negative=non_negative, l1_reg=l1_reg, l2_reg=l2_reg, l2_square_reg=l2_square_reg, unimodality=unimodality, normalize=normalize, simplex=simplex, normalized_sparsity=normalized_sparsity, soft_sparsity=soft_sparsity, smoothness=smoothness, monotonicity=monotonicity, hard_sparsity=hard_sparsity, n_const=n_const, order=order, ) if n_const is None: x = tl.transpose(tl.solve(tl.transpose(UtU), tl.transpose(UtM))) return x, x_split, dual_var dual_var = dual_var + x - tl.transpose(x_split) dual_residual = x - tl.transpose(x_split) primal_residual = x - x_old if tl.norm(dual_residual) < tol * tl.norm(x) and tl.norm( primal_residual ) < tol * tl.norm(dual_var): break return x, x_split, dual_var