tltorch.base.TensorModule
-
class
tltorch.base.TensorModule(*args, **kwargs)[source] A PyTorch module augmented for tensor parametrization
Methods
get_decomposition()Returns the tensor decomposition parametrizing the layer register_decomposition_forward_pre_hook(hook)Attach a new hook to be applied to the decomposition parametrizing the layer, before the forward. -
__init__(*args, **kwargs)[source] Initializes internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(*args, **kwargs)Initializes internal Module state, shared by both nn.Module and ScriptModule. add_module(name, module)Adds a child module to the current module. apply(fn)Applies fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to bfloat16datatype.buffers([recurse])Returns an iterator over module buffers. children()Returns an iterator over immediate children modules. cpu()Moves all model parameters and buffers to the CPU. cuda([device])Moves all model parameters and buffers to the GPU. double()Casts all floating point parameters and buffers to doubledatatype.eval()Sets the module in evaluation mode. extra_repr()Set the extra representation of the module float()Casts all floating point parameters and buffers to float datatype. forward(*input)Defines the computation performed at every call. get_decomposition()Returns the tensor decomposition parametrizing the layer half()Casts all floating point parameters and buffers to halfdatatype.load_state_dict(state_dict[, strict])Copies parameters and buffers from state_dictinto this module and its descendants.modules()Returns an iterator over all modules in the network. named_buffers([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. named_children()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself. named_modules([memo, prefix])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself. named_parameters([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. parameters([recurse])Returns an iterator over module parameters. register_backward_hook(hook)Registers a backward hook on the module. register_buffer(name, tensor[, persistent])Adds a buffer to the module. register_decomposition_forward_pre_hook(hook)Attach a new hook to be applied to the decomposition parametrizing the layer, before the forward. register_forward_hook(hook)Registers a forward hook on the module. register_forward_pre_hook(hook)Registers a forward pre-hook on the module. register_parameter(name, param)Adds a parameter to the module. requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module. share_memory()state_dict([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module. to(*args, **kwargs)Moves and/or casts the parameters and buffers. train([mode])Sets the module in training mode. type(dst_type)Casts all parameters and buffers to dst_type.zero_grad([set_to_none])Sets gradients of all model parameters to zero. Attributes
T_destinationdump_patches-